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Abstract

We propose a Hermite representation for deformable contour finding. This representa-
tion compares favorably in terms of versatility and controllability with other local contour
representations that have been used previously for this purpose. The Hermite representation
allows a compact representation of curved shapes, without the smoothing out of corners. It
is also well suited for both interactive and tracking applications.

The Hermite representation is used to formulate the contour finding problem as an opti-
mization problem using a maximum a posteriori energy criterion. Optimization is performed
by dynamic programming. Our approach to contour tracking decouples the effects of trans-
formation and deformation, using a template matching strategy to robustly account for the
transformation effect. We demonstrate these ideas on a variety of images from different
domains.
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1 Introduction

Image segmentation by boundary finding is one of the central problems in computer vi-
sion. This is because, among the features that can be used to distinguish objects from their
backgrounds, such as color and texture, shape is usually the most powerful. For detect-
ing instances of objects with fixed and known shape, the generalized Hough transform or
template matching is well suited (see [3]). For cases where there exists some flexibility in
the object’s shape (either w.r.t. a previous frame in a tracking application, or w.r.t. a user-
supplied shape in an interactive object delineation setting) deformable contour models have

found widespread use.

Deformable contours (also called active contour models, or “snakes”) are energy-
minimizing models for which the minima represent solutions to contour segmentation prob-
lems. They can overcome problems with traditional bottom-up segmentation methods, such
as edge gaps and spurious edges, by the use of an energy function that contains shape infor-
mation in addition to terms determined by image features. The additional shape information
can be seen as a regularization term in the fitting process. Once placed in image space, the
snake deforms to find the most salient contour in its neighborhood, under the influence of

the generated potential field.

Extensive work has been reported on deformable contours since their emergence in the
late eighties; examples are [1, 4-6, 8-12, 14-16]. A useful way to characterize the different

approaches is along the following dimensions:

e contour representation
e energy formulation (internal and external)

e contour propagation mechanism (spatial and temporal)

In Section 2 we review the various contour representations that have been used. We
proposed a new local representation for the deformable contour framework, based on Hermite
interpolating cubics; see Section 3. As will become apparent, it has several advantages; in

particular, it handles both smooth and polygonal curves naturally.
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We formulate the solution to the contour finding problem by a mazimum a posteri-
ori (MAP) criterion. This leads to an internal energy formulation which contains squared
terms of deviations from the expected Hermite parameter values. The external energy terms
describe the typical image gradient correlations; see Section 4.1. The resulting energy mini-
mization is performed by dynamic programming, which gives the optimal solution to contour

finding for a certain search region; see Section 4.2.

One of the well-known limitations of deformable contours is that their initial placement
has to be close to the desired object boundary in order to converge. In tracking applications,
this assumption might be violated. To keep the problem computationally tractable, we

propose to decouple the effects of transformation and deformation; see Section 4.3.

Experiments on a variety of images are presented in Section 5, and conclusions in Sec-

tion 6.

2 Contour Representations—A Review

Contour representations can be roughly divided into two classes, depending on whether they
are global or local. Global representations are those where changes in one shape parameter
affect the entire contour, and conversely, local change of the contour shape affects all pa-
rameters. These representations are typically compact, describing shape in terms of only a
few parameters. This is an advantage in a recognition context, i.e. when trying to recover
these parameters from images, because of lower complexity. A useful class of shapes easily
modeled by a few global parameters are the super-quadrics [15], which are generalizations
of ellipses that include a degree of “squareness”. To these shapes, one can add global defor-
mations, such as tapering, twisting and bending [2]. A more general global representation is
the Fourier representation [14]. It expresses a parameterized contour in terms of a number
of orthonormal (sinusoidal) basis functions. Arbitrary contours can be represented in any
detail desired, given a sufficient number of basis functions.

Local representations control shape locally by various parameters. This flexibility makes
local representations well suited in a shape reconstruction context, as is the case when de-

forming a contour to fit image data. The simplest contour representation is an ordered list of
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data points. More compact representations describe contours in terms of piecewise polyno-
mials. Each segment of the parameterized contour (z;(¢), y:(¢)) is described by a polynomial
in . The lowest-degree interpolating polynomial is of degree one, leading to a contour rep-
resentation by polylines and polygons. More flexibility is possible by the use of higher order
polynomials, generally cubic polynomials; they are the lowest degree polynomials for which
derivatives at the endpoints can be specified. Higher-order polynomials tend to bounce back
and forth in a less controllable fashion and therefore are used less frequently for interpolation

purposes.

Natural cubic splines are piecewise third-degree polynomials which interpolate control
points with C° C! and C? continuity. The natural cubic spline parameters depend on
all the control points, which makes them a global representation. B-splines, on the other
hand, have a local representation, where contour segments depend only on a few neighboring
control points. This comes at the price of not interpolating the control points. The same C?,
C* and C? continuity as with natural splines is now achieved at the join points of connecting
segments. By replicating control points, one can force a B-spline to interpolate the control
points. A last interesting property is that the B-spline can be specified so that it performs

a least-squares fit on the available data points.

In previous work, three local representations have been used for deformable contour find-
ing: point representations, polygonal chains, and uniform B-splines. These representations

have the following disadvantages when used for the contour finding task.

Manipulating contours on the fine scale offered by pixel-by-pixel representations leads
typically to high computational cost (for example, note the high complexity incurred in [8]).
The incorporation of a-priori shape information in this featureless representation is difficult.
If, on the other hand, a contour is represented by a few (feature) points, and contour finding
considers only image data in the local neighborhoods of these points, no use is made of data

at intermediate locations, which makes the approach prone to image noise.

The polygonal chain representation [6] overcomes some of these problems. However, it is
not well suited to representing curved objects, requiring many control points to be adequate.
In an interactive object delineation setting, this is tedious. For tracking applications, the

placement of control points close to each other, typical also of point representations, leads to
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stability problems. This is because for most contour finding approaches using local represen-
tations, a-priori shape information is encoded for each control point w.r.t. to its neighboring
control points (i.e. curvature [9, 12, 16], affine coordinates [10]). If control points are close
together, small deviations due to image noise or contour propagation will result in large

changes of local shape properties.

B-splines present an efficient and natural way to represent smoothly curved objects. For
objects with sharp corners they are less well suited; the C? continuity smooths out any regions
of high curvature on a contour. The fact that B-splines do not interpolate the control points
can be considered a drawback in an interactive object delineation setting (think of a physician
pointing to specific locations in medical images). The above-mentioned use of control point
duplication can take care of this, but then straight line segments appear around the new
C° continuous control points. Without user intervention, when to duplicate control point§
becomes a difficult decision; for example, Menet [11] duplicates control points in regions
where after M steps of contour deformation, the curvature is higher than a user-supplied

threshold 4.

3 The Hermite Representation

The previous considerations lead us to propose the Hermite representation for deformable
contour finding. Hermite contours are piecewise cubic polynomials, which interpolate the
control points po,...,pPN- In each interval, the Hermite cubic Q(s,t) = [z(s,t) y(s,?)] is

specified by the positions pj_1, p; and tangent vectors 7;" |, 7{ at the endpoints.

Let Q be an arbitrary cubic polynomial

Q=T-C (1)
~ where i i
Gz Gy
by b
T=[#t'1 C= !
Cx Gy
dy d,




with tangent vector Q'(t)
Q=T-C=[322t10] - C (2)

Given the Hermite parameter matrix
T
H; = [hjzhi,] = [pi-1 pi 7574 7] (3)

the corresponding Hermite coeflicient matrix Cy; can be derived [7] as

2 2 1 1]
CHi _ -3 3 -2 -1 H,
0 0 1 0
1 0 0 0]
We collect all the Hermite parameters in state vector H for later use:
_ - -
bo
7o
H= (4)
™
PN
| N

When considering the same criteria of usefulness for the contour finding problem as we
discussed in the previous section for the point-, polygon- and spline-based representations,

we note that the Hermite representation

e can efficiently represent both smooth and sharp contours. This is because smooth con-
tours are well represented by the Hermite interpolating cubics, while at the same time,
arbitrarily sharp corners can be easily generated at the control points by adjustment

of the left and right tangent vector parameters
e interpolates the control points

e is explicit in those features that can be measured from image data: position and
direction of gradient at control points. This allows us to prune the search space during

contour finding, as we will see in the next section.
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4 Contour Detection

4.1 MAP formulation

A mazimum a posteriori (MAP) criterion is formulated for the solution of the contour finding
problem. The aim is to find, from among all possible contours, the contour that matches the
image data best in a probabilistic sense. Let d(z,y) be the original normalized image and
t(z,y) the image template corresponding to the Hermite parameters H. We want to find
Hpytap which maximizes the probability that tg occurs given d, e.g. P(tHM AP |d). tHyap

is then the mazimum a posteriori solution to the problem. Bayes’ rule gives

P(tay,pld) = m}%xP(tHld)

_ P(d|ty) P(tu)
= Mg (5)

where P(d|tg) is the conditional probability of the image given the template, and P(tyg)
and P(d) are the prior probabilities for the template and image, respectively. Taking the
natural logarithm on both sides of eq. (5) and discounting P(d), which does not depend on

H, leads to an equivalent problem of maximizing objective function U:

U(

tay prd) = m}aitxU(tH,d)

= m}%x(ln P(tg) +In P(d|ty))

This equation describes the trade-off between a-priori and image-derived information.
If the image is regarded as a noise-corrupted template with additive, independent noise
that is zero-mean Gaussian, we have P(d|tg) = P(d|tg + n) = P(n|d — tg); thus
1 _(dzg)=tg(zw))?

P(ditm) = I e o
typ(z0) 2o,
and 2
d -1
In P(dltH) = constant + Z ( (x7y) 20-2}[(.'5,:1/)) (7)
tyy (=) i

The last term can be replaced by a correlation term d - tyg, approximating ||d|| and ||tgl]

by constants. For ||d|| =1 and ||tg|| = 1 we obtain

max In P(dltg) ~ min(l-d-tg) = min Fe (8)
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A similar derivation was described by Rosenfeld and Kak [13] and Staib and Duncan [14].
We model the prior probability for a Hermite contour H as
_(H[)-Hpp’
P(H)= P(HH) = constant-[]e 2 (9)
where H represents an expected contour. H is typically obtained as the sample mean of
contours generated in a training phase, or as the contour obtained by prediction during

tracking. o; acts as a weighting measure for the various dimensions. In case of an open

contour, we set the o’s of 7, and 73 to infinity.

In tracking applications the contour typically undergoes a tranformation T' (for example,
translation, rotation and scale) for which one does not want to penalize. Our modeling pro-
cess assumes that any transformation of the contour which one does not want to penalize has
already been performed before eq. (9) is applied. Any further contour change is considered

as a deformation from an expected contour and is thus penalized.

Taking the natural logarithm gives

max In P(tg) = min ZM = min By (10)

’L

4.2 Dynamic Programming
There are many ways to solve the minimization problem
II&H E = n.}.-%n (Eint + Eext)- (11)

Variational calculus methods have been used extensively for continuous parameter spaces
where derivative information is available [5, 9, 11, 12, 14, 15]. For discrete search spaces
one possibility is to use A.L search techniques (e.g. best-first, simulated annealing, genetic
algorithms). We will use a discrete enumeration technique based on dynamic programming
(DP) which was popularized by Amini et al. [1], and used since in [8, 10]. The advantages of
dynamic programming w.r.t. variational calculus methods are in terms of stability, optimality
and the possibility of enforcing hard constraints [1]. For dynamic programming to be efficient
compared to the exhaustive enumeration of the possible solutions, the decision process should
be Markovian. This is typically the case if the a-priori shape component Ej;; contains a
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summation of terms which depend only on parameters that can be derived locally along the

contour.

For the case of open contours, our objective function can be written as
E = El(p077-(-)+,7-1_)p1) + -0+
EN(pN—la 71-\}]-'_1a Tﬁ'? pN) (12)
Applying the dynamic programming technique to our formulation involves generating

a sequence of functions of two variables, s; with ¢ = 0,...,N — 1, where for each s; a

minimization is performed in two dimensions. s; are the optimal value functions defined by

so(t{,p1) = mir_1P Ei(po, 7§, 7 ,P1)
vaTO
$i(Th1Pivl) = If){li&(si—l(Pi,Ti‘L)+Ei(pi,'fi+,7i11,13i+1))
174
i=1,...,N-1 (13)

If p; and 77 (7') range over Np and Nr values at each index i, the complexity of the
proposed algorithm is O(N N2 NZ).

The above formulation is for open contours. For closed contours, where the first and last
control points are equal, we apply the same algorithm as for the open contour case, and
repeat it for all Np possible locations of the first (last) control point, while keeping track of

the best solution. The complexity increases to O(NNENZ).

Speedup can be achieved by a multi-scale approach. Here contour finding is first done
on a lower resolution image to find an approximated contour. This can be done with a
coarse discretization of the parameter space (i.e. requiring smaller Np and Nr for the same
parameter range). At the finer level, the originally desired discretization can be achieved by

decreasing the parameter range to lie around the solution found at the coarse level.

At each scale, the algorithm can be speeded up by discounting improbable control point
locations before starting the DP search. A measure of “improbability” can be specified
in terms of weak image gradient strength or the dot product between the measured and

expected gradient directions (the latter are explicit in the Hermite representation). If all




the candidate control point locations are rated similarly (e.g. standard deviation of ratings

below a threshold), it is more robust to consider all of them.

For closed contours, one can use only single-pass DP for the closed contour and optimize
for the remaining Eo(pN, 73, 7g , Po) While assigning to pp and pn the optimal values found
for the open contour case. Of course, all these speedup procedures lose the optimality
property of DP. Nevertheless, the last two methods, which we implemented, performed

satisfactorily in practice.

4.3 Contour Tracking

The high computational cost of dynamic programming, and of other search methods which
do not get stuck at the closest local minimum, makes search feasible only in a limited
neighborhood. For interactive contour delineation this is fine, since the user is likely to place
well-positioned control points, very close to the desired contour. In tracking applications
this requirement is often unrealistic. On the other hand, it is our observation that the effects

of deformation are often small from frame to frame once rigid motion is accounted for.

We therefore decouple the effects of motion and deformation on the contour, searching
first for transformation parameters T’ = [t, ¢, s] with t, ¢ and s denoting translation, rotation
and scaling. T is found w.r.t. the undeformed contour, after which search continues for the
deformation parameters. The first stage is robustly performed by template matching (or a
Hough transform [10]) on a Gaussian-blurred gradient image. The second stage is the DP
approach described earlier. Both stages use motion prediction methods; template matching
at time £+ 1 searches in a parameter range centered around predicted transformation 7'(t+1)

using predicted template H(t + 1). H(t + 1) is also the initial contour of the DP search.

For simplicity, we currently use T(¢ + 1) = T'(¢) and H(¢ + 1) = H(t). More generally,
T(t+1) = p(t + 1) where p is a best-fitting nth order polynomial at (t — M, T(t — M)),...,
(t —1,t). Similar considerations hold for H(t 4+ 1). If the time span M over which an nth

order model holds is large, it is efficient to use a recursive predictor such as a Kalman filter.




5 Experiments

We have performed experiments with the proposed combination of Hermite representation
and template-plus-DP search in both interactive and tracking settings. The associated tem-
plate matching parameters were range and discretization of the transformation parameters
(translation, rotation and scale). DP-related parameters included the initial values of the
Hermite parameters, their range and discretization, as well as the weighing parameters. The
locations considered around control point p; lay on a rectangular grid with z-axis perpen-
dicular to pj;1 — pi—1.- The Hermite gradients 7; were described in terms of length /; and
direction ¢;. Typically, N = 5, Np =9 (Np = 4 after pruning), N; =3, Ny = 9.

Figure 1 demonstrates the versatility of the Hermite representation. Different initial
contours are placed by the user as shown in Figure la. Figure 1b shows the search region
covered by DP for the initial control point placement; for each contour segment the Hermite
cubics are shown corresponding to (..., Pit+1me.) and (Bi i, Pit1n,) for fixed (initial)
control point locations and | = [,.. Many different Hermite contours which lie within
this search region are not displayed. Figure l1c shows the result of contour finding by DP.
One observes a wide variety of shapes that have been accurately described by the Hermite
representations, from the smoothly varying contour of the mug rim to the sharp corners of
the square pattern, with a curved horizontal segment joining at the corner. They compare

favorably with possible representations by polygonal chains, splines, or Fourier descriptors.

For completeness, we also show in Figure 1d the conditioned Sobel gradient image, which
is used by the DP algorithm. We use a conditioned image instead of the original Sobel image
in order to amplify weak but probable edges. This is done based on local considerations,
taking into account the mean p and standard deviation ¢ in an n X n neighborhood. A
linear remapping is applied to the image data at (z,y) if o is greater than a user-specified
threshold.

Figure 2 shows different instances of initial placement and contour detection on an MR
image of the human brain. Finally, Figure 3 shows a tracking sequence of a head using the

proposed combination of coarse-scale template matching and DP.
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(c)

Figure 1: Mug image: (a) contour initialization, (b) search region, (c) contour detection, (d)
conditioned Sobel image

6 Conclusion

We have proposed the use of a Hermite representation for deformable contour finding. We
have shown it to have advantages over point-, polygonal- and spline-based representations in
terms of versatility, stability and controllability. A decoupled approach to contour tracking
was proposed based on template matching on a coarse scale to account for motion effects,

and a DP formulation on a finer scale to account for deformation effects.
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Figure 3: A tracking sequence of a head (t = 0,8, 24, 30)
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